米乐体育app官方:伺服系统由哪几部分组成?伺服系统常用的参数有哪些?
作者:m6米乐游戏下载} 发布时间:2024-05-20 06:26:53

  “伺服”——词源于希腊语“奴隶”的意思。人们想把“伺服机构”当成一个得心应手的驯服工具,服从控制信号的要求而动作:在讯号来到之前,转子静止不动;讯号来到之后,转子立即转动;当讯号消失,转子能即时自行停转。由于它的“伺服”性能,因此而得名——伺服系统。

  运动控制(Motion Control,MC)起源于早期的伺服控制。简单地说,运动控制就是对机械运动部件的位置、速度等进行实时的控制管理,使其按照预期的运动轨迹和规定的运动参数进行运动。

  电机惯量:分为大、中、小惯量,指的是转子本身的惯量,从响应角度来讲,电机的转子惯量应小为好;从负载角度来看,电机的转自惯量越大越好

  法兰是轴与轴之间相互连接的零件,用于管端之间的连接。2.2伺服驱动器铭牌参数

  检测误差:包括给定位置传感器和反馈位置传感器的误差,传感器本身固有,无法克服;

  系统误差:系统类型决定了系统误差。只要p+q0,对阶跃输入信号就有足够的跟踪能力;对于速度输入信号,I型系统跟踪能力大幅削弱,跟随误差与开环传递函数的比例系数成反比,II型仍具有优良跟踪能力;对于加速度输入信号,仅II型系统能勉强跟随。

  选配刹车:刹车用来在电机停止时候锁定位置,不让电机由于外力作用发生运动;并非在运行时刹车。

  交流伺服电动机的运行需要角度位置传感器,以确定各个时刻转子磁极相对于定子绕组转过的角度,从而控制电动机的运行。

  (encoder)是将信号(如比特流)或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。

  根据检测原理,编码器可分为光学式、磁式、感应式和电容式。根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。增量式

  :就是对应一圈,运动部件的每一运动位置都有一个对应的编码,常以多位二进制码来表示,通过外部记圈器件可以进行多个位置的记录和测量;即使断电之后再重新上电,也能读出当前位置的绝对编码数据(记忆功能)。

  注意:单圈绝对值编码器断电后电机移动超过半圈后会导致位置丢失;多圈绝对值编码器断电后电机移动超过2048圈后会导致位置丢失。编码器和电流环没有任何联系,它的采样来自于电机的转动。

  编码器线数:即增量式码盘刻线数,其值等于编码器一转所发出的脉冲数,例如2500线个脉冲。这说明伺服电机转一圈所需脉冲数是固定的,且与电机自带编码器参数相关。

  严格来讲,伺服电机一转所需上位机发送脉冲数与编码器线数和电子齿轮比有关。编码器位数

  :其概念来源于绝对式编码器,例如17位(17B)、20位(20B)等,其数值含义见下:

  :A相、B相、Z相旋转输出脉冲电压,三相脉冲各自独立,A相和B相脉冲量相等,但是A相和B相之间存在一个90°(电气角的一周期为360°)的电气角相位差,可以根据这个相位差来判断编码器旋转的方向是正转还是反转,正转时,A相超前B相90°先进行相位输出,反转时,B相超前A相90°先进行相位输出。Z相为一圈一个脉冲电压。编码器线制

  方波输出的有两种,单相编码器输出一相脉冲,正交编码器输出两相相位相差90度的脉冲(在0度、90度、180度、270度相位角,这四个位置有上升沿和下降沿)。

  编码器计数的时候可以只记上升沿(无倍频),单相脉冲记上升沿和下降沿(2倍频);正交脉冲记所有上升沿就是2倍频,记所有上升和下降沿就是4倍频(方波最多只能做到4倍频)。

  以正交编码器为例,4倍频的意义在于在1/4T方波周期就可以有方向变化的判断,这样1/4的T周期就是最小测量步距,通过电路对于这些上升沿与下降沿的判断,可以4倍于PPR读取位移的变化,这就是方波的四倍频。这种判断,也可以用逻辑来做,0代表低,1代表高,A/B两相在一个周期内变化是0 0,0 1,1 1,1 0 。这种判断不仅可以4倍频,还可以判断移动方向。

  举例:如果电机装了一个2500线编码器,则在不倍频的情况下,电机每转一圈可输出2500个脉冲;如果经过4倍频电路处理,则可以得到一圈10000个脉冲的输出,电机一圈为360°,所以每个脉冲代表的位置为360°/10000,相比360°/2500, 分辨率提高4倍。

  绝对式码盘在任意位置都可给出与位置相对应的数字转角输出量,不存在四倍频的问题。

  (与柔性相对)就是电机轴抗外界力矩干扰的能力,与响应速度有关,刚性越高其响应速度也越高,但是过高容易让电机产生机械共振(抖动,可听到共振音);若系统刚性不足,在定位命令结束后,即使电机本身已经接近静止,机械传动端仍会出现持续摆动。

  在伺服应用中,用联轴器来连接电机和负载,就是刚性连接;而用同步带或者皮带来连接电机和负载,就是柔性连接。

  :电气系统的响应时间,即给定一个位置、速度、转矩指令,到电机运行至该位置、速度、转矩的时间。对响应速度和刚性关系的具体解释

  在位置模式下,用力让电机偏转,如果伺服系统的响应速度够快,当伺服系统刚刚检测到偏差就立即输出一个较大的反向力,则电机偏转角度较小,说明伺服系统刚性较强。电机惯量

  指的是转子本身的惯量(即转动惯量,只跟转动半径和物体质量有关),分为大、中、小惯量,从响应角度来讲,电机的转子惯量应小为好;从负载角度来看,电机的转子惯量越大越好。负载惯量

  由工作台及上面装的夹具和工件、螺杆、联轴器等直线和旋转运动件的惯量折合到马达轴上的惯量组成,一般负载惯量超过电机转子惯量的10倍,可以认为惯量较大,负载惯量需为电机惯量的 100 倍以下。

  导轨和丝杠的转动惯量对伺服电机传动系统的刚性影响很大,固定增益下,负载的转动惯量越大,刚性越大,越易引起机械共振;为了使电机不抖动,需要做到惯量匹配,即设置合适的负载惯量比。一般是要调控制器增益改变系统响应,进而达到惯量匹配;也可以选用刚性较高的机台以避免机械共振(机台具有的容许响应频率)。如何理解伺服电机的刚性和惯量?浅谈刚性、惯量、响应时间及伺服增益调整之间的关系

  任何旋转物体均有惯量存在,惯量大小直接反应旋转时加/减速所需转矩大小及时间长短。因此选用电机时必须计算出电机的负载惯量,才能据此选择所需电机的规格。如若选定的电机无法在希望的加速时间到达预定转速,必定是电机输出转矩不符合负载的需求,须加大电机的输出转矩。关于力矩、转矩和扭矩

  :力对刚体转动的影响,不仅与力的大小和方向有关,还与力相对于转矩的位置有关,为了描述力对刚体转动的作用,需要引入力对转轴的力矩这一新的物理量。转矩

  :任何元件在转矩的作用下,必定产生某种程度的扭转变形,因此习惯上又常把转动力矩叫扭转力矩,简称扭矩。脉冲当量

  脉冲当量是指控制器输出一个定位控制脉冲时,所产生的定位控制移动的位移。即单位脉冲的位移。线性运动是指距离,圆周运动是指角度。脉冲当量越小,定位控制的分辨率越高,加工精度也越高。所有的定位控制位移量以脉冲量为单位计算脉冲数。电子齿轮

  :简单地说就是用电气控制技术代替机械传动机构。一般来说,电机与驱动机构是直连的,机械结构固定后,传动比也就固定了;利用电子齿轮可以增加传动系统的柔性,提高传动精度。电子齿轮比

  :电机编码器接收脉冲与上位机发送脉冲之比,可在驱动器或者控制器上设置。由此可知:

  例:车床用 10mm 丝杠,电机转动一圈机械移动 10mm,每移动 0.001mm 就需要电机旋转 1/10000 圈(0.001/10),而如果连接 5mm 丝杠(即电机转动一圈机械移动 5mm),且直径编程的线 转,这是可以用电子齿轮设置,就可以保持脉冲当量不变。

  ,从内到外依次是电流环、速度环和位置环。电流环反应速度最快,速度环的反应速度必须高于位置环,否则将会造成电机运转的震动或反映不良。伺服驱动器的设计可尽量确保电流环具备良好的反应性能,故用户只需调整位置环、速度环的增益即可。伺服的控制方式有3种,分别是位置控制、速度控制和转矩控制。

  1、转矩控制(电流环/单环 控制):转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小。可以通过即时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。主要应用于需要严格控制转矩的场合,在转矩模式下驱动器的运算最小,动态响应最快。

  2、速度控制(速度环、电流环/双环 控制):通过模拟量的输入或脉冲的频率都可以进行转动速度的控制。速度控制包含了速度环和电流环。任何模式都必须使用电流环,电流环是控制的跟本。

  3、位置控制(三环控制):伺服中最常用的控制。位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度(类似步进电机),也有些伺服可以通过通讯方式直接对速度和位移进行赋值(外部模拟量的输入)。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。

  位置控制模式下系统进行了所有 3 个环的运算,此时的系统运算量最大,动态响应速度也最慢。转矩控制:是指伺服驱动器仅对电机的转矩进行控制

  APR——位置调节器; ASR——速度调节器; ACR——电流调节器伺服驱动器的工作原理及其控制方式

  第一环为电流环,最内环,此环完全在伺服驱动器内部进行,其PID常数已被设定,无需更改。电流环的输入是速度环PID调节后的输出,电流环的输出就是电机的每相的相电流。**电流环的功能为对输入值和电流环反馈值的差值进行PD/PID调节。**电流环的反馈来自于驱动器内部每相的霍尔元件。电流闭环控制可以抑制起、制动电流,加速电流的响应过程。

  第二环为速度环,中环。速度环的输入就是位置环PID调节后的输出以及位置设定的前馈值。**电流环的功能为对输入值和速度环反馈值的差值进行PI调节。**速度环的反馈来自于编码器的反馈后的值经过“速度运算器”的计算后得到的。

  第三环为位置环,最外环。位置环的输入就是外部的脉冲。**位置环的功能为对输入值和位置环反馈值的差值进行P调节。**位置环的反馈来自于编码器反馈的脉冲信号经过“偏差计数器”的计算后得到的。位置调节器APR其输出限幅值是电流的最大值,决定着电动机的最高转速。位置环、速度环的参数调节没有什么固定的数值,由很多因素决定。

  多环控制系统调节器的设计方法是从内环到外环,逐个设计各环调节器,使每个控制环都是稳定的,从而保证整个控制系统的稳定性;每个环节都有自己的控制对象,分工明确,易于调整。这种设计的缺点在于对最外环控制作用的响应不会很快。伺服电机三环(电流环、速度环、位置环)控制原理及参数调节

  关于位置或速度响应频率的选择必须由机台的刚性及应用的场合来决定,一般而言,高频度定位的机台或要求精密加工的机台需要设定较高的响应频率,但设定较高的响应频率容易引发机台的共振,因此有高响应需求的场合需要刚性较高的机台以避免机械共振。在未知机台的容许响应频率时,可逐步加大增益设定以提高响应频率直到共振音产生时,再调低增益设定值。

  本参数决定位置回路的应答性,KPP 值设定越大位置回路响应频率越高,对于位置命令的追随性越佳,位置误差量越小,定位整定时间越短,但是过大的设定会造成机台产生抖动或定位会有过冲(Overshoot)的现象。

  本参数决定速度控制回路的应答性,KVP 设越大速度回路响应频率越高,对于速度命令的追随性越佳,但是过大的设定容易引发机械共振。速度回路的响应频率必须比位置回路的响应频率高 4~6 倍,当位置响应频率比速度响应频率高时,机台会产生抖动

  负载惯性比越大,速度回路的响应频率会下降,必须加大 KVP 以维持速度的响应频率,在加大 KVP 的过程,可能产生机械共振音,请尝试利用本参数将噪音消除。越大的设定对高频噪音的改善越明显,但是过大的设定会导致速度回路不稳定及过冲的现象

  可降低位置误差量并缩短定位的整定时间,但过大的设定容易造成定位过冲的现象。

  按照设备需求选择,选择好合适的控制模式后,需要对伺服增益参数进行合理的调整。使得伺服驱动器能快速、准确的驱动电机,最大限度发挥机械性能。伺服增益通过多个参数进行调整,它们之间会相互影响。

  位置比例增益:设置值越大,增益越高,刚度越大,相同频率指令脉冲条件下,位置滞后量越小。但数值太大可能会引起振荡或超调;

  位置前馈增益:位置环的前馈增益大,控制系统的高速响应特性提高,但会使系统的位置不稳定,容易产生振荡;

  速度比例增益:设置值越大,增益越高,刚度越大,相同频率指令脉冲条件下,速度滞后量越小。但数值太大可能会引起振荡或超调;

  速度反馈滤波因子:数值越大,截止频率越低,电机产生的噪音越小;数值越小,截止频率越高,速度反馈响应越快。

  根据伺服电动机的种类,伺服系统可分为直流和交流两大类。采用电流闭环控制后,二者具有相同的控制对象数学模型。因此可用相同的方法设计交流或直流伺服系统。

  对于闭环伺服控制系统,常用串联校正或并联校正方式进行动态性能的调节。校正装置串联配置在前向通道的校正方式称为串联校正,一般把串联校正单元称作调节器,所以又称调节器校正;若校正装置与前向通道并行,称为并联校正。调节器校正

  常用的调节器有PD调节器、PI调节器和PID调节器。设计中根据实际伺服系统的特征进行选择。6系统接线及面板设置

  伺服电机都是三环控制,即电流环、速度环、位置环;舵机只检测位置环(一般用电位器)。伺服电动机与步进电动机的区别

  步进电机多运行于开环控制,伺服电动机运行于闭环控制。(使用步进电机的场合,要么不需要位置反馈,要么在其他设备上进行位置反馈)

  步进电机只能接受脉冲信号,二私服电动机可以接受模拟信号、脉冲信号和总线通信信号

  伺服电机和步进电机常被搞混,二者外形相似,区别点在于伺服电机尾部的反馈装置;此外步进电机一般都是一个引出线端,伺服电机由于带编码器所以有2个引线输出端(编码线和动力线)。